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CELLULAR AND DENDRITIC GROWTH 
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The interface morphology of primary phases can be classified in faceted and non-
faceted. Whether a phase grows faceted or non-faceted depends mostly on its en-
tropy of fusion. A discussion of the criterion for faceting during growth will be 
provided in Chapter 15, Atomic Scale Phenomena. At this point it is enough to 
state that, in general, if ∆Sf/R < 2, where R is the gas constant, non-faceted growth 
is expected. This is mostly the case for metals. If ∆Sf/R > 2, faceted growth will 
occur, which is common for non-metals. Some typical examples of faceted growth 
in metal/non-metal systems are given in Figure 8.1. The faceting behavior is also 
common in some transparent organic materials such as salol (Figure 8.2).  

Regardless of morphology, the driving force for growth is the undercooling. 
Uneven undercooling on the growing surfaces of the crystal will determine dra-
matic changes in its morphology. A schematic sequence of the shape change of a 
faceted primary phase growing in the liquid from a cubic crystal to a dendrite is 
presented in Figure 8.3. At the corners of the cube divergent transport occurs and 
the thermal as well as the solutal undercooling are larger than on the facets. Conse-
quently, the corners will grow faster, resulting in the degeneration of the cube into 

 of the alloys used in practice, such as steel, aluminum-copper alloys, nickel-
and copper-b

product of solidification is a solid solution. Depending on the thermal and com
sitional field, cellular or, in most practical cases, dendritic morphology wil
In other cases, even when the room temperature microstructure 
some primary phases solidify before the eutectic. They can be solid solutions, 
carbides, intermetallic phases, inclusions, etc. Their morphology affects mechani-

roperties, and thus, understanding how this morphology can be controlled is a 
mater of significant practical importance. A detailed discuss
growth, and in particular of dendrite growth, will be provided in the following 

ns. 

8.1 Morphology of primary phases 
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a dendrite. Thus, for a faceted phase the {111} planes are the preferred growth 
direction. 

  
a) vanadium carbides in a Fe-C-V alloy b) graphite crystal in Ni-C alloy (Lux et al., 

1975) 

  
c) primary Si crystal with (111) facets in Al- d) sta
Si alloy (Elliot, 1983) 

r-like primary Si crystal in Al-Si alloy 
(Elliot, 1983) 

Figure 8.1. Faceted growth in metal /non-metal systems. 

 
 

Figure 8.2. Faceted cells in 
salol (Hunt and Jackson, 
1966). 

Figure 8.3. Schematic representation of the growth of a 
faceted dendrite. 
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The more interesting problem is that of the morphology of primary non-faceted 
phases as encountered in commercial alloys such as steel, cast iron, aluminum 
alloys and superalloys. At the onset of constitutional undercooling, instabilities 
appear on the interface as segregations associated with depressions (nodes) (Figure 
8.4a). As the undercooling increases, these nodes become interconnected by inter-
face depressions, forming first elongated cells (Figure 8.4b), and eventually a hex-
agonal cellular substructure (Figure 8.4c). 

   
ted cells   a) nodes       b) elonga    c) hexagonal cells 

Figure 8.4. Evolution of segregation substructure as a function of constitutional undercool-
ing; cross-section view (Biloni and Boettinger, 1970). 

According to the theory of constitutional undercooling, as the undercooling in-
creases, the cells should gradually change into dendrites. The question is how does 
this transition occur? Regular cells grow in the direction of heat extraction, which 
is typically perpendicular to the S/L interface. When the solidification velocity is 
increased, because of higher requirements for atomic transport, the main growth 
direction becomes the preferred crystallographic growth direction of the crystal 
(Figure 8.5a). The preferred crystallographic growth directions for some typical 
crystals are given in Table 8.1. At the same time with the change in growth direc-
tion, the cross section of the cell deviates from a circle to a Maltese cross, a

ig
nd 

eventually secondary arms are formed (F ure 8.5d). 

[100]

a) b) c) d)

he
at
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Figure 8.5. Sequential change 
of interface morphology as the 
solidification velocity increases: 
a) cell growing in the direction 
of heat extraction; b) cell grow-
ing in the [100] direction; c) cell 
/dendrite; d) dendrite (Morris 
and Winegard, 1969). Reprinted with 
permission form Elsevier. 

rred crystallographic growth directions for some typical crystals are given 
in Table 8.1. The orientation of the growing dendrite with respect to the direction 
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of the heat flow can affect significantly the dendrite morphology, as exemplified in 
Figure 8.6. 

Table 8.1. Preferred crystallographic growth directions. 

Crystal structure Growth direction Example 
fcc [100] Al 
bcc [100] δFe 

bc tetragonal [110] Sn 
hcp [ ]0110  ice flakes, graphite 

 [0001] Co17Sm2

  

Figure 8.6. Effect of crystalline anisotropy on the morphology of directionally solidified 
dendrites; growth velocity 35µm/s, heat extraction upward; thin films of a CBr4–8mol% 
C2Cl6 alloy (Akamatsu et al., 1995). Reprinted with permission from Phys. Rev. Copyright 1995 by the American 
Physical Soc. www.aps.org 

8.2 Analytical tip velocity models 

Cells are a relatively simple periodic pattern of the S/L interface. Dendrites that 
evolve during solidification of metals are complex p
branches (primary, secondary, tertiary, etc.). Describi
ral evolution of such patterns is a challenging ende
merical models have been proposed to describe den
models will be discussed in this chapter. 

The analytical models are limited in scope, attem
drite tip kinetics, as determined by the thermal and so
Dendritic array models include also an analysis of tra ot to the tip. 

8.2.1 Solute diffusion controlled growth (isothermal growth) of the den-
drite tip 

gradient (curvature and thermal undercooling ignored). 

atterns characterized by side 
ng mathematically the tempo-
avor. Both analytical and nu-
dritic growth. Only analytical 

pting to describe solely den-
lutal field, and by capillarity. 

nsport from the ro

Consider a needle-like crystal growing in the liquid. Assume diffusion-controlled 
growth, which means that the only driving force for growth is the concentration 
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In a first approximation, let us assume that the tip of the crystal is a hemi-
spherical cap (hemi-spherical approximation), as shown in Figure 8.7. Flux balance 
at the interface gives: 

( )
tip

L dr

dC
CVr ⎟

⎠
⎞

⎜
⎝
⎛2π S DrC −=− 22π     or   ( )

orr=
LCV −1

dr
Dk ⎜

⎝
⎛−= 2 (8.1) 

The solutio tion is (see ins vation): 

Pc = Ωc  (8.2) 

dC
⎟
⎞  
⎠

n of this equa et for deri

2r 

     surface area of   
  hemispherical cap  
(gives radial diffusion) 

determines volume   
that growth in time 

πr2 

CL 

r

2πr2
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Figure 8.7. Diffusion field ahead of a hemispherical needle. 

r

 

Figure 8.8. Dendrite tip 
having the shape of a 
paraboloid of revolution. 

wher he solutal Péclet number as defined earlier is: e t

DrVPc 2=  (8.3) 

and the solutal supersaturation, Ωc, is given by Eq. (7.18). Substituting in Eq. (8.2) 
we obtain: 

rDV Ω= 2  
cL

Derivation of the growth velocity of the hemispherical needle, Eq. (8.2). 

(8.4) 

To find the composition gradient at the tip of the crystal it is necessary to solve the steady 
state diffusion equation in radial coordinates with no tangential diffusion: 

0
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2 d
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The general solution of this equation is C = C1 + C2/r, where C1 and C2 are constants. 
The following boundary conditions are used: 
 at r → ∞  C = C   thus C  = Co 
 at r = r   

o 1

o C = CL  thus C2 = ro (CL - Co)  
Then: 

( )
o

oL
rr r

CC
rdr

o

−=⎥⎦⎢⎣
−−=⎟

⎠
⎜
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2

 

oLo CCrdC −⎤⎡⎞⎛

ting in Eq. (8.1) we obtain: 
( )kC
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D

rV

L

oLo

−
−

=
12

Substitu , and since the solutal supers

tion is

atura-

 ( ) ([ ])kCCC LoLc −−=Ω 1  and the solutal Péclet number is ( )DrVP oc 2=  we 

obtain the final solution Eq. (8.2). 

 
Eq. (8.4) gives the growth velocity of the hemispherical needle. It indicates that 
velocity depends on tip radius, r, and on supersaturation, Ωc, which is the driving 
force. However, velocity is not uniquely defined since this equation does not have 
a unique solution for V, but rather pairs of solutions for V and r. In other words, the 
solution of the diffusion equation does not specify whether a dendrite will grow 
fast or slow, but only relates the tip curvature to the dendrite rate of propagation. 

The other problem with this solution is that the shape defined by this velocity is 
not self-preserving. In other words, the hemispherical cap does not grow onl  
the x-direction, but also in all r-directions, meaning that th
grows. Experimental work on dendrite growth has demons
tip preserves its shape. Consequently, another solution mus
sion problem.  

raboloid of revolution 
(Figure 8.8), which is self-preserving, the solution to the steady state diffusion 

 

y in
e needle thickens as it 
trated that the dendrite 

t be found for the diffu-

If it is assumed that the dendrite tip has the shape of a pa

equation given by Ivantsov (1947) is: 

  where    ( ) ( )ccP Ω=)(I  ∫
∞

cccccc x1

(Pc) is the exponential integral function. This solution is valid for both 
the solutal diffusion (P  and Ω ) and the thermal diffusion (P  and Ω ). 

There are s
in numerical or analytical calculations (see inset). Since I(P) is a function of both V 

d. 

−
=== dx

x
PPPEPPP

)exp(
exp)()exp(I  (8.5) 

P
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c c T T

everal approximations of the Ivantsov number, I(P), that can be used 

and r, the problem of evaluating an unique velocity is still to be solve
 
Approximation of the Ivantsov number. 

The continued fraction approximation is:   ...
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Note that the zero-th approximation of the continued fraction approximation of the 
Ivantsov function is Io(P) = P, that is the hemispherical approximation. 

sting on P <  t ing approximation can 

I(P) = P·exp(P)·[ao + a1·P + a2·P
2 + a3·P

3 + a4·P
4 + a5·P

5 - ln(P)] 

where ao = -0.57721566, a1= 0.99999193, a2= -0.24991055, a3= 0.05519968, a4= -
0.00976004, a5= 0.00107857. 

For limiting values of the Péclet number, the Ivantsov function for a paraboloid of revo-
luti d Kurz, 1994): 

    I(P) ≈ -P lnP – 0.5772 

Typically, for ca  solidificati  1. For his case the follow
be used (Kurz and Fisher, 1989): 

on can be approximated as (Trivedi an

for P<<1: P 
for P>>1:    I(P) ≈ 1 – 1/P + 2/P2

8.2.2 Thermal diffusion controlled growth 

During solidification, a thermal gradient is imposed over the system. Thermal 
diffusion will drive the process. In pure metals, this will be the only driving force 
for growth. If it is assumed that the driving force for perturbation growth is only 
the thermal gradient (thermal dendrite), similar equations to those obtained for the 
diffusion-controlled growth can be derived: 

PT = ΩT    with    
α2

rV
PT =     and    

cH

T

f

T
T ∆

∆
=Ω  (8.6a) 

and alternatively: 

I(PT)= ΩT (8.6b) 

where PT i l Péclet number and ΩT is the thermal supersaturat
the hemisphe oximation a derivation of the particular case of Eq. (8.6b) is
given in the inset. 
 

s the therma ion. For 
rical appr  

Derivation of the correlation between the thermal Péclet number and thermal super-
saturation. 

Temperature flux balance at the interface gives: 

orr
L

f

dr

dT
r

c

H
Vr
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⎟
⎠
⎞

⎜
⎝
⎛−=

∆
αππ 22 2  

To calculate the thermal gradient at the interface we need the temperature of the tip. The 
on in radial coordinates is T = C1 + C2/r. Apply-

ing the boundary conditions: i) at r → ∞ - T = Tbulk and ii) at r = ro - T = Tf , the solution 
becomes T = Tbulk + ∆T⋅ro/r. 

Thus, the temperature gradient at the tip is

solution of the steady state diffusion equati

 ( ) oTrr rTdtdT
o

∆−==
. Substituting in the 

flux balance equation and rearranging: 
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cH

TT

∆
∆

=
α2

    or    PrV T = ΩT

f

All the diffusion models discussed above conclude that at steady state, the tip of 
le law V·r = const. This 

means that there is no unique solution, since multiple pairs of V and r satisfy this 

p velocity and radius is obtained. The problem is then 
to 

pillary controlled growth 

To obtain a unique solution it is necessary to find additional criteria that define the 
tip radius. Several models have been proposed: 

•

velocities, when the diffusion length 
becomes of the size of the solute capillary length (

the dendrite will advance in the liquid following the simp

relationship. However, experimental work has demonstrated that for each under-
cooling a unique value of ti

find the additional constrains that impose a unique dendrite tip radius from the 
multiple solutions offered by the diffusion models.  

8.2.3 Solutal, thermal, and ca

 the extremum criterion 
• the marginal stability criterion 
• the microsolvability theory 

The extremum criterion 
As discussed earlier, at high solidification 

oTVD ∆Γ= // ), the interface 

hus, as s ure 8.9, th
tip is limited by the absolute stability. The extremum criterion implies that the 
perturbation will grow at the maximum possible velocity and the minimum possi-

These conditions are satisfied by the velocity corresponding to 
the radius tip of the dendrite re. 

becomes planar. T hown in Fig e maximum velocity of a dendrite 

ble undercooling. 

log V

log r

ro

capillary limit s

constitutional

re

r

stability limit

V r = 2 DΩ

VasVcr

diffusion limit

rs

log V

log r

ro

capillary limit s

constitutional

re

r

stability limit

V r = 2 DΩ
diffusion limit

VasVcr

rs

 
 
An expression for V can be obtained for example for a perturbation driven only by 
the 

Figure 8.9. Growth velocity - tip 
radius correlation; the full line is the 

l perturbation), sta

V-r correlation. 

solutal and curvature undercooling (soluta rting from: 

TTT ∆+∆=∆  
rc



 Cellular and denritic growth  165 

where 

( ) ( ) ( )

( ) ( )
D
rV

CkmPCkm LcL 2
11 −−=−=

    and    
CkmCCmCCmT cLcSLoLc 1 Ω−−=Ω−−=−−=∆

r
Tr =∆  (8.7) 

Substituting these last two equations in the total undercooling equation we 
have: 

Γ2

( )
rDL 2

rV Γ2*CkmT +−−=∆ 1  (8.8) 

According to the extremum criterion, it will be assumed that growth proceeds at 
the minimum undercooling (the maximum of the curve) which can be obtained 
from = 0, that is: rT ∂∂∆

( ) LL
e G

V
Γ

=⎥
⎤Γ − 44 2/1

*
 

Ckm

D
r

⎦
⎢
⎣

⎡
−

=
1

(8.9) 
2/1

Substituting in Eq. (8.8) an equation for tip velocity is obtained:  

2TV ∆= µ     with    
( ) *14 L

L

Ckm

D

−Γ
=µ  (8.10) 

Note that for steady state solidification, kCC oL /* = . 

However, experimental evidence (Nash and Glicksman, 1974) demonstrates 
that such velocities are considerable higher than the measured ones. This is shown 
schematically in Figure 8.9, where rs is the position of the experimental point and 
re is the value calculated from the extremum criterion.  

The marginal stability criterion 
Langer and Müller-Krumbhaar (1978) performe
Ivantsov parabola dendrite tip region in a pure u all departure 
from the parabolic shape, caused by interface energy, was introduced in the system. 
It was concluded that dendrite tip radii are not stable at values smaller than pre-
dicted by the extremum criterion, or larger than a certain critical value. At such 
large radii tip splitting will occur to decrease the radius. They proposed that this 

dius is selected by the dendrite during its growth (marginal stability crite-

 case it 
is assumed that the tip is a growth instability driven by the kinetic, solutal, thermal, 
and capillary 

d a linear stability analysis for an 
ndercooled melt. A sm

largest ra
rion). A number of models discussed in the following paragraphs use this criterion 
to obtain a unique dendrite tip radius. 

To formulate the growth velocity of the dendrite tip for the most general

undercooling:  
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∆T = ∆Tk + ∆Tc + ∆TT + ∆Tr (8.11) 

A comprehensive treatment of this problem applicable to a wide range of Péclet 
numbers was given by Boettinger et al. (1988). ∆Tk was formulated thr
2.26, ∆TT through Eq. (8.6a), and ∆Tr as 2Γ/r. The constitutional undercooling was 
written as: 

ough Eq. 

( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
Ω−−

−=−−=∆ c

mVm
T

/)(

ce

LL
oLoLL k

CmCCVm
11

1)(  (8.12) 

Here, mL(V) is the velocity dependent liquidus slope given in Eq. 2.32. When all 
these equations are introduced in Eq. (8.11), the values of dendrite tip velocity and 
tip 

 occur marginal stability criterion). In other words, 
the perturbation will grow with the shortest stable wavelength, i.e., rs = λi. This 
implies that if the tip radius of the perturbation is smaller than λ , the radius will 
tend to increase, while if it is larg
the radius will decrease. Then, for 

radius for a given ∆T can be calculated. A dependency as shown in Figure 8.9 is 
obtained. To obtain a unique value for dendrite tip velocity it was assumed that 
growth s at the limit of stability (

i

er than λi, additional instabilities will form and 
εε /& = 0, Eq. (7.23) gives: 

TTcL GG
r

ξξ −
2 σΓ

=
*

    with    ( ) 12* 4
−

= πσ  (8.13) 

Note that this equation can be used to derive dendrite growth velocity equations 
for both slow solidification rates typical for castings (P<1) and rapid solidification 

and Eq. (8  can now be concomitantly 
sol
rates (P>>1). The modified Eq. (8.11) .13)

ved numerically to give a unique solution for the dendrite tip velocity.  
In their model, Lipton et al. (1984) also started from Eq. (8.11), ignored the ki-

netic undercooling, and used the formulations for ∆Tc, ∆TT, and∆Tr as before: 
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H
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 (8.14) 2

)()1(1
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1)(

The dendrite tip radius is derived form the marginal stability theory as: 

1
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 (8.15) 

From the solution of the diffusion field the tip velocity is formulated as: 

V = 2α PT/r (8.16) 
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Finally, the solutal and thermal Péclet numbers are correlated by: 

Pc 

ter in more detail. Since velocity is introduced through the thermal and 
solutal supersaturations, either the hemispherical (P = Ω) or the paraboloid (I(P) = 
Ω) approximations can be used. 

The dendrite tip velocity for equiaxed dendrites g
can be calculated from the preceding four equations which are solved by numerical 

= PT (α/D) (8.17) 

Here, σ* is the dendrite tip selection parameter ≈ 1/(4π2). This parameter will be 
discussed la

rowing at small undercooling 

iterations. 
A more complete solution was derived by Trivedi and Kurz (1994). They 

started with Eq. (8.11) and obtained an equation similar to Eq. (8.14), but with a 
different formulation for the solutal undercooling (second RH term) as follows: 

)()1(1

)(

c

co
c PIk

PITk
T

−−
∆

=∆  (8.18) 

The capillary term in Eq. (8.14) is generally negligible for metals at low under-
cooling (the case of shaped casting  but is significant undes), r rapid solidification 
conditions. Substituting the values for the thermal and constitutional gradients in 
(8.13), the general p radius sele
obtained: 

dendrite ti ction criterion in undercooled alloys is 

*
22 1
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PIkD

VTk
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where ∆To(V) is the velocity dependent solidification interval and β = 0.5[1 + 
(kS/kL)]. This equation is valid for slow as well as rapid cooling unconstrained
growth. The modified Eq. (8.14) and Eq. (8.19) completely describe the den

 
drite 

growth problem and can be solved numerically to obtain the growth velocity. 
A simple analytical solution can be obtained fo

sumption of small Péclet number (Pc = 0, ξc = 1): 
r a solutal dendrite under the as-

oCkm )1( −
LD

rV
4 2

2 Γ
=

π  (8.20) 

For constrained growth (directional solidification) they proposed the equation:  

2*
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Purely analytical solutions can be obtained with further simplifying assump-
tions. Following the derivation proposed by Nastac and Stefanescu (NS) (1993) for 

assuming that the effect of surface energy (curvature) is introduced through the 
unconstrained growth (equiaxed dendrites), ignoring kinetic undercooling and 

limit of stability criterion, only the solutal and thermal undercooling must be con-
sidered. The dendrite tip velocity equation is (see inset for derivation): 

2V =
1

*

Teq ∆µ     with    22
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L
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πµ  (8.22) )1( ⎤⎞⎛ ∆− HCkm
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The growth coefficient can also be written as:  

( ) 111 −−− += Tceq µµµ     with    
( ) *2 12 L

LD
=µ     and    

c Ckm −Γπ f

Lc
=T H∆Γ22π

α
µ  

For steady state,  will be substituted with Co/k. The growth coefficient is a 

constant only for stea

ed that the contribution of thermal undercooling is negligible as com-
pared to that of solutal undercooling (see Application 8.1). Then, the velocity equa-
tion can be simplified. Since ∆TT = 0 and thus GT = 0, tip velocit
(8.22) with the growth coefficient given by the equation for µc. 
 

*
LC

dy state, since 
LC  is constant only for steady state. An equa-

tion similar to Eq. (8.22) can be obtained if a paraboloid of revolution shaped tip is 
assumed. Then, the I(P) = Ω relationships must be used in the derivation.  

This equation describes unconstrained growth (equiaxed dendrites) since it in-
cludes thermal undercooling ahead of the interface. For some metallic alloys, it can 
be calculat

*

y is given by Eq. 

Derivation of the Nastac-Stefanescu equation.  
When using the assumptions used by the model the total undercooling is:  

∆T = ∆Tc + ∆TT (8.23)

where ∆Tc is given by Eq. (8.7) and ∆TT is calculated from Eq. (8.6a). If it is further as-
sumed that the tip of the instability is of hemispherical shape, and substituting the value of 
Pc and PT = ΩT it is obtained that: 
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The liquidus and thermal gradients are: 
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The first of these two equations was obtained from Eq. (4.5). A factor of ½ was introduced 
to describe the flux at the hemispherical tip. The last equation is valid for a negative gradi-
ent, which occurs during equiaxed solidification. Then, assuming that growth occurs at the 
limit of stability (r = λi), Eq. (7.26) gives ( )TL GGr −Γ= π2 . Substituting the expressions 

for GL and GT, q. (8.23) the tip radius is:  and using E

Tr ∆Γ= 24π  (8.25) 

e hemispherical tip ve-
locity, Eq. (8.22), is obtained. 

Substituting this expression for r in Eq. (8.24) the equation for th

 
For the case of columnar dendrites (constrained growth), there is no thermal 

undercooling. Thus, ignoring the kinetic undercooling, the basic undercooling 
equ  ∆T

e u
ation simplifies to  = ∆Tc + ∆Tr. 
Using similar formulations for th ndercooling as above, and the hemispheri-

cal approximation, Kurz, Giovanola, and Trivedi (KGT) (1986) derived the follow-
ing equation for columnar dendrites: 

2

22

2

)1(

)1(
c

o

LcLo T
Ckm

DDCkm
V ∆

−Γ
=

Γ
Ω−

=
ππ

 (8.26) 

Both the KGT and NS models are only valid for small Péclet numbers, since 
this assumption was used to derive Eq. (7.27), which is adopted for the limit of 
tability criterion. 

mplifications introduced in the ana-
 more accurate 

semi-analytical Trivedi-Kurz (TK) model. To this effect, a comparison of calcu-
he two models and experimental data is sho

Figure 8.10 (for details of the calculation see Application 8.3). Both models are 

tend to infinity when planar solidification occurs). 
Only the TK model for columnar growth (simplified Eq. (8.20)) follows well the 
experimental data in the velo
velocities in casting solidification are in the range of 0.01 to 0.5m/s, it is apparent 
that both models can be used. 

 a constrained environment, since the tempera-
ys positive. Its growth is driven by the 

temperatue gradient. The interface temperature of the columnar dendrite is between 
TL and TS, and the undercooling is mostly constitutional, ∆Tc. The assumption of 
negligible thermal undercooling is reasonab  for most metallic alloys, so that its 
growth velocity can be calculated with Vc = µc ∆Tc

2. At steady state the columnar 

s
Let us now evaluate to what degree the si

lytical Nastac-Stefanescu (NS) model produce deviations from the

lated V-r correlations with t wn in 

very close to the experimental data on the linear part of the log-log graph. As the 
growth velocity decreases and a dendritic-to-cellular transition occurs, the radius 
increases very fast (it should 

city range smaller than 1µm/s. However, as typical 

A columnar dendrite operates in
ture gradient ahead of the interface is alwa

le
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1.E-06

experiment
NS solutal

1.E-03

TK columnar

Figure 8.10. Measured and calculated 
tip radii of cells and dendrites in a Fe-

.01%Si alloys solidified 
under a therm
various velo

1.E-05

1.E-04

Ti
p 

ra
di

us
, m

 

3.08%C-2
al gradient of 5000K/m at 

cities. Experimental data 
are from Tian and Stefanescu (1992). 

1.E-07 1.E-06 1.E-05 1.E-04 1.E-03
Growth velocity, m/s

den

an unconstrained environment, since the tem-
perature gradient ahead of the interface is negative. Its velocity is again mostly 
dictated by the constitutional undercooling, a
as long as ∆Tbulk < ∆To (see example in Application 8.5). If bulk o S

then, interface equilibrium does not apply anymore, and the partition coefficient is 
vel

drite can grow at a maximum velocity corresponding to the maximum under-
cooling ∆Tc = ∆To. However, steady state can be reached also at an undercooling 
smaller than ∆T , when the solutal velo

 

o city, Vc, is equal to the thermal velocity, VT, 
calculated from macro-transport considerations. As long as Vc < VT, the tip velocity 
is simply Vc. If, on the contrary, Vc > VT, dendritic growth is constrained at VT. 

An equiaxed dendrite operates in 

nd can be calculated with Eq. (8.22), 
∆T  > ∆T  (T* < T ), 

ocity dependent.  
Koseki and Flemings (1995) developed a model that includes the combined ef-

fects of the undercooled melt and heat extraction through the solid, applicable to 
chill-casting. It is a hybrid of the models for constrained and unconstrained growth. 

Experimental work by Nash and Glicksman (1974) has demonstrated that, in-
deed, the operating point of the dendrite is close to the value calculated from the 
limit of stability criterion (rs on Figure 8.9). In their experiment, they measured 
concomitantly r, V, and ∆T during the growth of a succinonitrile dendrite. It was 
also proven that the tip of the dendrite fits a parabolic curve (dotted line on Figure 
8.11). 

The microsolvability theory 
While, as discussed, the marginal stability criterion gives an excellent agreement 
with most experimental results, there is no physical reason to accept the marginally 
stable state over the other stable states. 

Kessler and Levine (1986) and Bensimon et al. (1987) have found a unique, 
self-consistent solution to the steady-state dendrite problem (the interface shape 
obtained from the thermal and solutal field equations with the boundary conditions 
that includes the effect of surface energy satisfies the shape preserving condition) 
taking into account the anisotropy of the interface energy around the dendrite tip. 
This unique solution, known as the microsolvability condition, gives a unique 
value for the dendrite tip radius. 
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Figu
dend
Reprin

re 8.11. Tip of a growing succinonitrile 
rite (Huang and Glicksman, 1981). 
ted with permission from Elsevier. 

 
 
The concept that the capillary effect is a singular perturbation which destroys 
Ivantsov’s continuous family of solutions has been confirmed by analytical and 
numerical studies. While the solvability theory has achieved notable theoretical 
successes, its quantitative relevance to the interpretation of experimental data has 
not been established (Barbieri and Langer, 1989). 

8.2.4 Interface anisotropy and the dendrite tip selection parameter σ* 

In their analysis, Langer and Müller-Krumbhaar (1978) introduced the dendrite tip 
selection parameter, σ* through the relationship: 

( ) 21*
coc d σδ  (8.27) 

where δ

r =

c = 2DL/V is the diffusion length, do = Γ/∆To is the capillary length, and σ*
c
 

is the parameter for the solutal case (with DS<<DL). Substituting these relationships 
this equation can be rewritten as: 

( )oc TDrV ∆Γ= 2 σ  (8*2 .28) 

arginal stability theory this parameter is 
con

Note that this equation is identical with Eq. (7.29) when assuming λi = r, and 
using the notation σ* = 1/4π2. In the m

sidered to be a constant equal to 0.02533. 
Similarly, a parameter for the purely thermal case (for αS = αL) can be derived, 

using for example Eqs. (8.6a) and (8.25), to obtain: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Γ

∆
=

L

Lf

T

cH
rV

ασ 2

1 2
*

 (8.29) 
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In order to analyze the dendrite tip selection parameter for undercooled alloys, 
Trivedi and Kurz (1994) substituted Eqs. (8.28) and (8.29) in Eq. (8.19) to obtain: 

**

*

*

112

σβ
ξ

σ
ξ

σ
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
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⎝

⎛
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⎠

⎞
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⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ L

T
c

o

L

c C

C  (8.30) 

They stated that for an alloy system, σ* is c
The microsolvability theory produces

rived through the marginal stability criterion. The m σ* is not a 
numerical constant any more, but rather a function of the interface energy anisot-
ropy parameter, ε, as follows: 

σ* = σo ε1.75 (8.31) 

where σo is of the order of unity and the definition of ε is discussed in the follow-
g paragraphs. 

onstant, but σ*
c
 and σ*

T
 are not. 

 equations similar in form as those de-
ain difference is that 

in
Crystalline materials are characterized by anisotropic S/L interface energy. For 

cubic crystals, the variation of the interfacial energy γ with orientation θ can be 
expanded about the dendrite tip orientation (θ = 0), which has four-fold symmetry. 
This expansion up to the first order term is (Trivedi and Kurz, 1994) 

)4cos1()( θδγθγ += o
, where δ is the interface anisotropy parameter. 

Using the Gibbs-Thomson equation for anisotropic materials, the capillary un-
dercooling is: 

( ) ( ) fofr SKSKddT ∆−=∆+=∆ θεγθγγ 4cos122  (8.32) 

where ε = 15δ and is known as the anisotropy coefficient. 
The anisotro

Higher anisotropy reduces the tip radius (Lu and Liu, 2007). 

The rather intricate picture of dendritic growth presented so far is made even more 
complicated by buoya
cation under terrestrial conditions
velocity nde

dercooling relation. Their solu-
tion of the three-dimensional Navier-Stokes equation under the approximation of 
low Reynolds number
melt undercooling: 

py in the S/L interface energy strongly affects the tip radius. 

8.2.5 Effect of fluid flow on dendrite tip velocity 

ncy-driven convection, which is unavoidable during solidifi-
. It was calculated (Miyata, 1995) that the growth 

 of the dendrite increases with the forced melt flow at a given u rcool-
ing. The effect of melt flow becomes particularly significant in the low velocity 
regime of both dendrite growth and forced flow.  

For the case of uniform fluid velocity, u∞, directed opposite to the crystal 
growth direction, Ananth and Gill (1991) have proposed a simplified approxima-
tion for the effect of fluid flow on the velocity-un

, Re, resulted in the following expression for the thermal 
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with the function f(η) given by: 

( ) [ ] [ ]( )
( )

( )
( )2/22 *

11 ReEReERe ααηηα

Re

2/***R η  

function and ν is the kinematic viscosity. 
Glicksman et al. (1995) measured the dendritic growth velocities and tip radii 

le in micro-gravity environment experiments (space shuttle C
bia) g isothermal solidification (Figure 8.12). It was observed that conv

 

2/exp2/exp1
)( 1

2/.**

ReErVReerV
Vu

r
f

ηη −
−−−

−++= ∞

* is defined by the relation Re* = V r/ν + Re, with the Reynolds number Re = u∞ 
r/ν. E1 denotes the exponential integral 

of succinonitri olum-
durin ective 

effects under terrestrial conditions increase the growth velocity by a factor of two 
at lower undercoolings (< 0.5K). In the undercooling range of 0.47 to 1.7K, the
data remained virtually free of convective effects. A diffusion solution to the den-
drite problem was not consistent with the experimental data. 

Figure 8.12. Dendrite tip velocity as a 
ndercooling for terrestrial and 

nditions (Glicksman et al., 
function of u
microgravity co
1995). 
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8.2.6 Multicomponent alloys 

Eq. (8.22) can be extended to dilute multicomponent systems, by writing the 
growth constant as (Nastac and Stefanescu, 1993): 
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 (8.3  

h

To avoid excessive computational time a combined multicomponent/pseudo-
binary approach can be used (Nastac et al., 1999). First, thermodynamic calcula-
tions are used to obtain the slope of the liquidus line and the partition coefficient 
for each element at successive temperatures. The algorithm for such calculations is 
now incorporated in some solidification simulation software (e.g., the SLOPE 
subroutine in ProCAST). Then, an equivalent slope

3)

ere i is the component, and n is the number of components in the alloy that have 
a significant contribution upon the tip growth velocity. 

The solidification parameters of interest for modeling for calculation of den-
drite tip velocity of multicomponent alloys, i.e., the equilibrium liquidus tempera-
ture, TL, the liquidus slope, mL, and the partition coefficient, k, can be obtained by 
using thermodynamic calculation, as described by Boettinger et al. (1988). How-
ever, when these parameters are used one needs to solve the mass transport equa-
tion for each species.  

, Lm , and partition coefficient, 

k , are calculated for each temperature using the equations: 

( )
L

n

i

i
L

i
L

L
C

Cm
m

∑
== 1     and    

( )

( )∑

∑

=

==
n
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L
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L
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i
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L
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L

Cm

kCm
k

1

1  

where LC  is the sum of all the elements in the liquid, and , and  are the 

slope, liquid composition, and partition coefficient of individual elements, respec-
tively. Then regression equations were fitted through the mL-T and kL-T curves to 
obtain the temperature dependence of mL and of kL: 

i
Lm , i

LC i
Lk

2TcTbamL ⋅+⋅+=     and    2''' TcTbak ⋅+⋅+=  

where a, b, etc., are known coefficients.  
The liquidus temperature can be calculated using the equivalent slope: 

LLfL CmTT ⋅+=  
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or from the weighted average of th e slope and liquid composition of each element: 

where Tf is the melting temperature of the pure solvent. 

8.3 Dendritic array models 

In the preceding discussion only events happening around the tip have been con-

iffusion and diffusion from 
the

∑+=
i

i
L

i
LfL CmTT  

sidered. However, most practical interest resides in structures that are the result of 
the growth of arrays of instabilities. In this case lateral d

 root to the tip of the instability must also be included.  
Bowers et al. (1966) proposed a model in which the contribution of liquid dif-

fusion from root to tip was included (Figure 8.13). Solute balance in the volume 
element is: 

tx
f

x
L

L ∂∂∂
=⎟

⎠
⎜
⎝

 

where 

CC
D
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L

C  is the average composition of the volume element at time t. The variation 
of composition in time is: 

( )
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∂

+−= 1  

The first term on the right hand side is the solute rejected from the growth of the 
perturbation (gro d y-directions) ond term is the solute entering 
the volume element due to liquid phase diffusion from root to tip (x-direction). The 
governing equation becomes: 

wth in x an . The sec
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solute rejected
toward tip at interface 

 

Figure 8.13. Array of instabilities. 
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For steady-state solidification, solute flux balance at the tip gives ( )tipot CCV −  

( )tipL xCD ∂∂−=

from root to tip the c

. For constant concentration gradient along x between perturbations 

oncentration gradient is =xC ∂∂  mGdxdTm =−= −1 . Sub-

stituting this gradient in the previous equation, the tip composition is obtained as: 

Ct = (1 - a) Co    with    ( )oLL CVmGDa =  (8.35) 

erface can then be expressed as: The composition gradient at the int

( ) ooL Ca
D

V
CC

D

V

x

C
=−=

∂
∂  (8.36) 

Also:  
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Substituting (8.36) and .37) in the solute balance equation: (8

( ) oL

L

L

L

CakC
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f

f

+−
−=

1

∂∂  

Upon integration between Co and CL, we obtain the local solute redistribution equa-
tion for dendritic solidification:  

( ) ⎥
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a
kCC  (8.38) 

If fS(T) is known, the shape of the columnar dendrite can be calculated. The 
limits a = 0 and a = -(1 - k)/k correspond to the condition of Scheil and equilibrium 
solidification, respectively. For an Al-4% 
predicted to form in the interdendritic so
(see Application 8.2). 

The hemispherical approximation analysis of Burden and Hunt (1974), slightly 
modified by Laxmanan (1985) resulted in the following equation for tip undercool-
ing: 

Cu alloy a maximum of 9% eutectic is 
lidification for a = 0, and less for a < 0 

( )
rH

T
Grk

D

rkCmV

V

GD
T

fS

LSL
T

L

oTL

∆
+−

−
−=∆

ρ
γ21  (8.39) 
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Assuming further that growth proceeds at the extremum, that is ( ) rT ∂∂ ∆ = 0, an

equation for the
tion velocity can be deri

 

 tip radius of an array of instabilities as a function of the solidifica-
ved: 

( ) TLTo DVkCm −−1 GkGGk
r

−
==

Wh ed. The tip 
com

ΓΓ 22  

en substituting this equation in Eq. (8.39) a V(∆T) equation is obtain
position was calculated to be: 
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8.4 Dendritic arm spacing and coarsening 

ter directly related to 
the mechanical properties of the alloy. In general, the finer is the arm spacing, the 
higher the mechanical rties. In columnar solidification, both primary and 
secondary arm spacing can be measured through metallographic analysis. In equi-
axed solidification, only the secondary arm spacing is an issue. In the characteriza-

8.4.1 Primary spacing 

The relationship that allows calculation of the primary spacing, λ1, is a complicated 
dependency of solidification velocity and temperature gradient. Two simpler rela-
tion

The dendritic arm spacing (DAS) is a morphological parame

prope

tion of the fineness of the microstructure, the primary arm spacing is replaced by 
the number of grains. 

ships for the primary DAS will be discussed here. 
A first relationship can be obtained based on Flemings array (Figure 8.13). Ig-

noring solute diffusion in the x-direction, material balance dictates: 

t

C

y

C LL
L ∂∂

=
2

    where  D
∂∂ 2

m

GV

dt

dx

dx

dC

dt

dC LyL −==  

Upon substitution in the governing equation we have ( )=22 dyCd L  

( )( )mGDV L−= . Integrating between 0 and dC⁄dy, and between 0 and y yields 

mDyGVdydC −= . Integrating again between Co/k and  (in the interden-

dritic spacing), and between 0 and λ/2 gives: 

max
LC
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Dm o
L
max2 8λ     or     

( ) 2/1−= VGctλ     or, more general,  
1 .    ( ) n

Tct
−

= &.1λ  (8.40) 

Examples of cooling rates and dendrite arm spacing are given in Table 8.2. 
Kurz and Fisher (1989) have derived a more complex relationship. Assume that 

the dendrites are half of ellipsoids of revolution (Figure 8.14). Then, the dendritic 

mated that: 
tip radius is r = b2/a. For a hexagonal arrangement of dendrites b = 0.58λ1. From 
the phase diagram it can be approxi

G

T

G

TT

G

T
a oE ∆

≈
−

=
∆

=
*'  

Table 8.2. Range of cooling rates in solidification processes (Cohen and Flemings, 1985). 

Dendrite arm 
spacing, µm 

Cooling rate, 
K/s 

Production processes 

10-4 to 10-2 large castings 5000 to 200 
10-2 to 103 small castings, continuous castings, die castings, strip 

castings, coarse powder atomization 
200 to 5 

103 to 109 fine powder atomization, melt spinning, spray deposi-
tion, electron beam or laser surface melting 

5 to 0.05 

Co

TE

T ∆T'

r

a

b

∆To*

 

Figure 8.14. Assumptions for calculation of primary DAS (Kurz and Fisher, 1989). 

This approximation is increasingly valid, as the com ion of the alloy is closer 
to the eutectic. Then: 

posit

( ) GTr o∆=2
158.0 λ , or GrTo∆= 31λ . Since 

)(2 oTVD ∆Γπ : 

2     where    

r =

/14/1
11

−− ⋅⋅= GVλµλ [ ] 4/1
1 3.4 Γ∆= Lo DTλµ  (8.41) 

The constant refers to a single-phase alloy. 
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Earlier, Hunt (1979) ed a similar equation for primary spacing differ-
ent only through the num nstant, which was 2.83 rather than 4.3. Note that 
all models introduced here demonstrate that the primary spacing is a function of G 
and V. 

Bouchard and Kirkaldy (1997) tested these equations against experimental data 
for ary 
allo

for dendrites:   ⋅⋅= GVctλ     and    

However, for unsteady-state flow all equations failed to perform adequately. 
Once the primary spacing is established, it will remain constant throughout 

steady - state solidification, and during cooling in solid state. If non-steady state 
r 

ad primary spacing ure 8.15. Engu n 
th DAS while bran . 

has deriv
erical co

 steady-state solidification of cells (28 alloys) and dendrites (21 alloys) in bin
ys. The experimental data summarized by the following equations agree rea-

sonable well with theoretical predictions: 

for cells:           05.036.0
1 . ±−⋅= Tct &λ  

03.03.0
1 . ±−⋅= Tct &λ   04.042.004.028.0

1 . ±−±−

solidification occurs, the primary spacing will change. Two typical mechanisms fo
justment of 
e inc e of 

 are presented in Fig
ching decreases DAS

lfing results i
reas

 
  a) engulfing      b) branching 

Figure 8.15. Mechanisms for primary DAS adjustment. 

8.4.2 Secondary arm spacing 

In the early understanding of dendrite growth, it was assumed that the secondary 
dendrite arm spacing is formed at the beginning of solidification. Then, arms 
thicken and grow as solidification proceeds. Thus, the final arm spacing, λ was 
thou

Later it was realized that as solidification proceeds, only the larger arms grow. 

secondary arm spaci S) increases an
ng of dendrites. The effect of coarsening on th

of a transparent organic material is shown in Figure 7.16f. It is seen that the secon-
dary DAS increases with the distance behind the tip. 

Many mathematic ve been developed for
on the concept that de ening is diffusion contr
under consideration being the solvent. Assuming isothermal coarsening, the growth 

al particles must be proportional to the 
compositional gradient: 

f, 
ght to be the same as the initial spacing, λo.  

The smaller arms remelt (dissolve) and eventually disappear. Consequently, 
throughout solidification the ng (SDA d λf > λo. 
This is the dynamic coarseni e SDAS 

al models ha  dendrite coarsening based 
ndrite coars olled, the diffusive species 

rate of the distance, λ, between two spheric
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( )λλ LCctdtd ∆⋅=  (8.42) 

The liquid temperature and composition in equilibrium with a solid surface de-
pends on the curvature of that surface. Indeed, the curvature undercooling at the tip 
of the dendrite is ∆Tr = 2Γ/r. Since ∆Tr = m ∆Cr, 1)/(2 −⋅=Γ=∆ rctrmCr . Curva-

ture and local curvature differences must increase approximately proportionally 
with the inverse of the spacing λ. Thus. r = ct⋅λ. It follows that ∆C λ-1

r = ct⋅ , and 
also 1−⋅=−=∆ λctCCC . 21 rrL

in Eq. (8.42) yields dλ/dt = ct⋅λ-2. Rearranging and integrating be-
rm spacing, λo, and λf, and ero and the final local solidi-

nce between the tim dus isotherm and the 
sol

 (8.44) 

where tf is the local solidification time. 
Using the experimental data presented Figure 8.16 it can be calculated that, for 

Al-4.5% Cu alloys, the constant in the coarsening law has a value of 10-16 m/s3. 

Substituting 
tween an initial a between z
fication time (the differe es when the liqui

idus isotherm pass the particular microvolume), tf, gives: 

foof t⋅=− µλλ 33  (8.43) 

Assuming that λo << λf = λ2, results in a final secondary arm spacing of: 

3/13/1
2 fo t⋅= µλ

Figure 8.16. Relation be-
tween SDAS and solidifi-
cation time for Al-4.5% 
Cu alloys (Flemings et al., 
1991). Copyright 1991 American 
Foundry Soc., used with permission. 

 
 
The constant in Eq. (8.44) has been derived by a number of authors, mostly for the 
case of spherical particles (see for example the derivation in the inset). Some 
typical formulations and their basic assumptions are given in Table 8.3. Isothermal 
coarsening assumes that the only driving force is solute diffusion and that the 
fraction solid is constant. However, during solidification the temperature decreases, 
the fraction solid increases, and an additional driving force, thermal diffusion, must 
be considered. This is dynamic coarsening. 
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Table 8.3. Coarsening constants. 

Model Coarsening constant Basic assumptions 
Kattamis-
Flemings, 
1965 

( )
( )( )oELL

oEL
o CCkCm

CCD

−−
Γ

=
1

ln20
µ  isothermal coarsening, of 

spheres; 
see inset for derivation 

Ardell, 
1972 ( )

f

f
C

TR

DCv
o

LoSLm
o

−
−=

1
1

2 γ
µ  

tion 

dynamic coarsening of spheres, 
diffusion of solute depends on a 
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solution of dynamic multiparticle 
diffusion problem; random pat-
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Monte 
Carlo simulation 

Mortensen, 
1991 ( ) ( )3/13/2 112 SSLL

L
o

ffkCm −−
=µ  27D Γ dynamic coarsening of spheres 

 

( ) ( )2/1114 SSLL

L
o

ffkCm −−
27D Γ

=µ  dynamic coarsening of cylinders 

 
Derivation of coarsening constant - Kattamis/Flemings model.  
The basic assumptions of the model are as follows: isotropic growth of two spherical disper-

centration gradient; unidirectional diffusion; the soids of constant total volume; constant con
radius of the larger dispersoid is much larger than that of the smaller dispersoid (r2 >> r1).  

Both spheres are at the same undercooling and separated by a distance λ. As discussed 
before, the difference in the interface concentration of the two spheres is: 
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It is further assumed that the interface concentration of th large particle is equal to the e 
average liquid concentration due to segregation, 

L
r
L CC ≈1 , and that the liquid concentration 

is a linear function of time, from an initial concentration Co to the final eutectic concentra-
tion CE: 

( )
f

oEoL t

t
CCCC −+=  

If it is also assumed that since r  >> r , r  = ct2 1 2 . and r1 = f(r), the last equation can be in-
grated between the initial time (0) when the small particle has a radius r1 = ro, and the time 

tf when the particle has vanished: 
te
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The majori
arms h

ty of models for the temporal evol ion e 
ave a cylindrical shape (e.g. Kattamis et al. 1967). Calculations then predict 

the axial remelting of the thinner arm. 
Other models consider the dendrite arms to be tear-shaped. If a tear-shaped arm 

 surrounded by two cylindrical arms (Chernov, 1956) material is transported from 
 where the radius r2 is 

ut of λ2 assume that the dendrit

is
the base where the radius of curvature r1 is small, to the tip,
large (Figure 8.17a). Eventually r2 becomes zero and the arm detaches from the 
stem of the dendrite as demonstrated experimentally by Papapetrou (1935) (see 
Figure 8.18). 

 

 
 

      

b) two tear-shaped arms surrounded 
by cylindrical arms (Mendoza et al. 2003). 
With kind permission of Springer Sci and Business Media. 

          a)                              b) 

Figure 8.17. Material transport for (a) one 
tear-shaped arm surrounded by cylindrical 
arms, or (

ence 

    a) after 18 min.           b) after 32 min. 

If case (b) in Figure 8.17 is considered (Young and Kirkwood, 1975), material 
trans  

Figure 8.18. Separation of dendrite arms in 
NH4Cl (Papapetrou, 1935). After separa-
tion the detached arms move out of focus. 

ported away from the base accumulates at the tip and the distance d2 decreases
until coalescence occurs. Experimental evidence of this mechanism is shown in 
Figure 8.19. 
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Figure 8.19. Coalescence of arms J and I in succinonitrile (Huang and Glicksman, 1981). 
Reprinted with permission from Elsevier. 

Experimental data on secondary arm spacing have also been reported to fit an 
equation similar to Eq. (8.40) proposed for primary spacing. Analysis of 60 
experimental data on two alloys by Bouchard and Kirkaldy (1997) produced the 
following relationship: 

( ) 02.034.0

2

±−
⋅= Tct &λ  

For alloys solidifying with equiaxed structure, it is not possible to define a pri-
mary arm spacing. To evaluate the length scale of the microstructure the average 
grain size (average diameter of grains on the metallographic sample), or volumetric 
grain density (number of grains per unit volume) are used. These numbers are 
primarily functions of the nucleation potential of the melt. Secondary arm spacing 
can also be used to evaluate the fineness of equiaxed structures. However, as noted 
above, it represents thermal conditions during solidification, not nucleation condi-
tions. Thus, it is possible to have a coarse grained casting with fine secondary arm 
spacing. 

8.5 The columnar-to-equiaxed

-
stings, they will be rejected having an 

mportant to understand the conditions 
n casting. 

 the middle ingot: a chill zone, made of small equiaxed grains result-

 transition 

In many applications, either a columnar or
casting. If, because of lack of adequate p
equiaxed transition (CET) occurs in these ca
unacceptable structure. Therefore, it is i
under which a CET can occur in a give

 an equiaxed structure is desired for the 
rocess control, a sudden columnar-to

An example of such a transition in an ingot is shown on Figure 8.20. This is not 
a schematic drawing but a modeled microstructure, which correctly describes the 
real microstructure. The details of the model will be discussed in Section 13.1.1. 
The results of the calculations are very realistic. Three different structural regions 
are shown on
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ing from rapid cooling against the mold wall; a columnar zone; an equiaxed zone 
toward the middle of the casting. The figure also indicates that as the undercooling 
increases the structure in the bulk of the ingot changes from fully columnar to 
mixed columnar /equiaxed. Thus, a CET occurs as the undercooling is increased. A 
typical structure showing the CET in an Al-5%Cu ingot is presented in Figure 8.21. 
One possible rationalization of the occurrence of CET is in terms of constitutional 
undercooling. At the beginning of solidification, the temperature gradient in the 
liquid is rather high, and constitutional undercooling is limited (Figure 8.22a). As 
solidification continues, the mold is heated. The temperature gradient in the liquid 
decreases and the constitutional undercooling may reach the middle of the casting 
(Figure 8.22b). If nucleation of equiaxed grains occurs they will have favorable 
conditions and will grow ahead of the columnar interface (see also Figure 7.13). 

 
          50 °C      80 °C          150 °C 

Figure 8.20. Typical structural regions in castings (Zhu and Smith, 1992). Reprinted with permission 
from Elsevier. 

 

Figure 8.21. CET occurring in an Al-5 wt% Cu ingot solidified against a chill placed at its 
base (Guo and Stefanescu, 1992). Solidification is from right-to-left. The CET occurred 
when the temperature gradient in the melt ahead of the interface decreased in the range of 
113 to 234K/m. In the equiaxed zone the number of grains was 5⋅106m-3. The average solidi-
fication velocity at the CET was measured to be 3.5⋅10-4m/s. Copyright 1992 American Foundry Soc., used 
with permission. 
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constitutional
undercooling

While the role of constitutional undercooling in the CET is not under dispute, it 
does not seem to be the only mechanism responsible for it. Chalmers (1962) has 
shown that when the center of a casting is isolated with a cylinder, fewer and 
coarser grains grow than in the absence of isolation. This is in spite of the fact that 

e cen r is c lly u derco rs then proposed 
result from the 

are then carried into the bulk liquid. If they survive until the superheating is re-
moved a CET occurs. However, assuming that only the big bang is responsible for 
CET cannot account for equiaxed zone formation in the absence of a chilled mold. 

Jackson et al. (1966) noticed that increased convection during solidification of 
organic alloys produced a large number of nuclei in the liquid. They postulated that 
dendrite arms remelt because of recalescence, detach from the dendrite stem and 
then float into the center of the casting where they serve as nuclei for equiaxed 
grains. Another argument for the dendrite detachment mechanism is that the me-
chanical strength of the dendrite is negligible close to its melting point, and thus 
convection currents can simply break the dendrite (O’Hara and Tiller, 1967). 

S S

fS
c < 10-2 fS

cr = 0.0049. Using a model of hemispherical dendrite growth, and as-
suming small thermal undercooling the following criteria were derived: 

th te onstitutiona n oled in both cases. Chalme
the “Big Bang Mechanism” which postulates that equiaxed grains 
nuclei formed during pouring by the initial chilling action of the mold. The grains 

Hunt (1984) has proposed a 1D analytical model for the CET based on the fol-
lowing assumptions: equiaxed grains are formed by heterogeneous nucleation and 
do not move with the liquid, steady state is possible for a fully columnar, columnar 
+ equiaxed, or fully equiaxed growth. It was further assumed that a fully equiaxed 
structure results when the fraction of equiaxed grains is higher than a critical frac-
tion of solid, f e > f cr = 0.49, and that a fully columnar structure is produced when 

equiaxed 

TS

TL

columnar 

mushy 

liquid 

TL 
TL 

TS 
TT 

 
a) no constitutional undercooling in the 
middle of the casting - only columnar 
growth is possible 

b) constitutional undercooling in the middle 
of the casting - if nucleation occurs, equi-
axed growth is possible 

Figure 8.22. Occurrence of CET because of increased constitutional undercooling result-
ing from lower temperature gradient. 
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• fully equiaxed growth occurs when: 
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• fully columnar growth develops when: 
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where N is the volumetric nuclei density, ∆TN is the undercooling required for 
heterogeneous nucleation, and ∆Tc is the undercooling at the columnar front calcu-
lated as: 

[ ] 2/1)1(8 DVCkmT oLc −Γ−=∆  (8.46) 

 
ept that columnar grains can grow beyond the 

coh

The selection of the thresholds in the derivation of the above relationships is
debatable. It seems difficult to acc
point when dendrite coherency is established, fS . Accordingly, a more reasonable 
upper limit is fS

cr = fS
coh. Typically fS

coh = 0.2-0.4. Also, mixed equiaxed-columnar 
structures are seldom observed in castings. In most cases an abrupt CET is seen. 
Indeed, microgravity work performed by Dupouy et al. (1998) on Al-4% Cu alloys 
demonstrated that while a smooth (mixed structure) CET is obtained in micrograv-
ity (no thermo-solutal convection), an abrupt CET is seen on the same sample 
solidified under terrestrial conditions. Thus, it is reasonable to assume that the CET 
occurs simply when coherency is reached.  

Another weak assumption is that of stationary equiaxed grains. Indeed, because 
of the thermo-solutal and shrinkage convection, the equiaxed grains will move with 
the liquid, unless coherency is reached. As discussed previously, one of the main 
reasons for the CET is the presence of thermosolutal convection. 

Based on the preceding discussion a new model is proposed in the following 
paragraphs. Consider a volume element of length l, that extends from some arbi-
trary point in the columnar region to a region where the temperature is equal to the 
nucleation temperature, ∆TN that is very close to the liquidus temperature (Figure 
8.23). Consequently, the grains moving away out of the volume element in the bulk 
liquid in the x-direction will not survive, and no grains are advected from the bulk 
liquid into the element in the x-direction. It is further assumed that the net contribu-
tion of the flow in the y-direction to the number of grains is zero. Within the vol-
ume element the CET occurs if the equiaxed grains can reach fS

coh before the co-
lumnar front traverses the element. Thus, condition for the CET is: 

tc ≥ te
coh    (8.47) 
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23. Volume element for calcula-
tion of CET. 

where tc is the time required for the columnar front to move across the volume 
element, and te

coh is the time req
Then: 

S  L 

∆ T   

x 

y 

l   

T

Figure 8.

uired for the equiaxed grains to reach coherency. 

( ) ( )222 TGTVGTVlt cccc ∆∆=∆== µ  

where G and ∆T are the average thermal gradient and undercooling in the volume 
element, respectively, Vc is the growth velocity of the columnar dendrites, and µc is 
the growth coefficient of the columnar dendrites. 
Similarly, since when assuming spherical grains, the fraction of solid in the volume 
element can be calculated as NrfS

3)3/4( π= , where r  and N  are the average 

grain radius and the average volumetric grain density, respectively: 
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where Ve is the growth velocity of the equiaxed dendrites, and µe is the growth 
coefficient of the equiaxed dendrites.  

Introducing the last two equations the CET criterion Eq. (8.47), the CET will 
occur when: 
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In turn, the average volumetric grain density can be written as the difference 
between the active heterogeneous nuclei, N, and the grains entering the volume 
element because of fluid flow into the volume element: 

Vc 

 
GG

VL 

N
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( )NVVNN L+=  

where  the flow x-direction, and V is the solidification velocity. 
Note that if VL = V

VL is velocity in the 
, N  =0, and equiaxed solidification is impossible. Substituting 

in Eq. (8.48) the final CET condition comes:  be
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This equation suggests that the probability of formation of an equiaxed structure 
increases as the nucleation pot d the undercooling increase, and as the 
coherency solid fraction and liquid convection decrease. Note that for the case 
when conve  is ignored (VL = 0), this equation is very similar to those derived 
by Hunt. However, it was obtained using less restrictive assumptions. 

a
ment can be calculated. 

8.6 Applications 

(8.49) 

ential, an

ction

This model could be further develop nclude grain transport into the vol-
ume element, by assuming that the outer limit of the element is at a temperature 
below the nucle tion temperature, or if the number of grains to be advected in the 
volume ele

ed to i

Application 8.1 

Compare the solutal and thermal undercooling for an Al-4.5% Cu alloy and for an Fe-0.09% 
C alloy. 
 
Answer: 
Since the expressions for undercooling include both velocity and tip radius it is not possible 
to calculate the undercooling without additional data. However, a comparison can be made 
by calculating the ratio ∆T/Vr for the tw  cases. From Eqs.(8.7)) and (8.6a), and using data 
in Appendix B: 
 

o

DkCkmrVT oc 2)1( −=∆  = 1.03⋅1010 K⋅s⋅m-2 for the Al-Cu alloy, and = 8.9⋅108 K⋅s⋅m-2 

for the Fe-C alloy 
 

cHrVTT f α2  = 4.94⋅10  K⋅s⋅m  for the Al-Cu alloy, and = 2.53⋅10  K⋅s⋅m for the 

Fe-C alloy 
It is obvious that the therm

undercooling for the Al-Cu al
the thermal undercooling cannot always be neglected. 

Application 8.2 

∆=∆ 6 -2 7 -2 

al undercooling is very small as compared with the solutal 
loy, but within an order of magnitude for the Fe-C alloy. Thus, 

Compare the tip radius - growth velocity correlation for solutal dendrites and solutal-thermal 
dendrites for a Fe-0.09% C alloy using the Nastac-Stefanescu (NS) (1993) and the Trivedi-
Kurz TK (1994) models. 
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Answer: 
Combining Eqs. (8.23) and (8.24) and assuming steady-state, we obtain the V-r correlation 

for the NS model as follows: 
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For the TK model, assuming steady
similar equation from Eq. (8.19): 

-state and low Péclet number (<<1) we can obtain a 
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For the solutal dendrite, that is a dendrite whose growth is controlled solely by the solu-
tal field, only the first term in the parenthesis is used. Using data in Appendix B we obtain 
the graph in Figure 8.24. It is seen that there is no difference between the solutal NS and TK 
in the range of velocities used in the calculation. When the effects of thermal undercooling 
are also used in the NS model, a slight decrease in tip radius is calculated. 
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Figure 8.24. Calculated dendrite tip radii 

ite tip radius - growth velocity relationship calculated with the Trivedi-
urz ( 994) and Nastac-Stefanescu (1993) models, with the experimental data on the Fe-

3.08% C-2.01% Si - 0

for solutal and solutal-thermal dendrites 
for a Fe-0.09% alloy. 

Application 8.3 

Compare the dendr
1K

.104% Mn - 0.016% S - 0.029% P alloys obtained by Tian and Ste-
fanescu (1992). 

 
Answer: 
For the NS model the solutal part of Eq. (8.50) will be used. For the TK model the model for 
columnar dendrite, Eq. (8.21), will be used. Again, assuming steady state ( kCC oL =* ) and 

(ξc = 1) the TK columnar dendrite growth velocity becomes: low Péclet number 
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Since the alloy is a multicomponent alloy, the average composition C  must be ex-

Co = %C + 0.31•%Si + 0.33•%P - 0.27•%Mn + 0.4•%S = 3.72 

The predicted and experimental results are plotted in Figure 8.10. Note that while the 
NS model fails at growth velocities smaller than ~1µm/s, it describes growth reasonable 
wel

Application 8.4 

Calculate the amount of eutectic that will solidify in the interdendritic regions of an Al-4% 
Cu alloy, for three different solidification velocities: 3⋅10-5, 1⋅10-7, 6⋅10-8 m/s. Assume a 
con

o

pressed as a carbon equivalent to reduce the multicomponent alloy to a binary one. The 
following relationship is used: 

l within the range of velocities typical for castings. It is also the simplest one to imple-
ment in a numerical code. The thermal gradient is important only in the cellular solidifica-
tion range. 

stant temperature gradient of 2000 K/m. 
 
Answer: 
The required materials constant are obtained from Appendix B and listed in the Excel 
spreadsheet in column A. The maximum solubility of Cu in Al is 5.65%. When the composi-
tion reaches this value the rest of the liquid solidifies as eutectic. 

The calculation of the solid composition is performed in columns D, E, and F based on 
the fraction solid listed in column C (Table 8.4). First the parameter a is calculated for the 
three velocities. Cells D3, E3, and F3 include the equation for a, i.e., Eq. (8.35). Columns D, 
E, and F starting with cells D6, E6, and F6 include the equation for CS, i.e. Eq. (8.38). The 
calculation is run until CS = 5.65. 

Table 8.4. Organization of spreadsheet. 

 A B C D E F 

1 Constants Data     

2 DL 2.8E-9 V 3.00E-05 1.00E-07 6.00E-08 

3 GL 2000 a -1.15E-02 -3.46E+00 -5.76E+00 

4 m -3.6     

5 Co 4.5 fS CS CS CS

6 k 0.14 0 0.64 2.81 4.26 

7 Cmax 5.65 0.1 0.70 2.83 4.26 

8   0.2 0.77 2.87 4.27 

9   0.3 0.86 2.91 4.27 

10   0.915 5.25 4.83 4.55 

11   0.922 5.65 5.00 4.57 

12   0.9405  5.65 4.66 

13   0.9845   5.63 

 
The calculation results are shown in Figure 8.25. The fraction of eutectic is calculated as fE = 
1 – fS. It is seen that for V = 3
tic is 0.078. As V increases t E

⋅10-5, for which a is very small, the calculated fraction of eutec-
o 1⋅10-7, f  decreases to 0.059, and to 0.016 for V = 6⋅10-8. It 
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will become zero for equilibrium solidification when the velocity is so small that a = (k – 
1)/k. 
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Fraction solid

V = 3⋅10-5 

V = 1⋅10-7 
eutectic as a function of solidification 
velocity. 

 
Answer

V = 6⋅10-8 

Figure 8.25. Calculation of amount of 

 

Application 8.5 

Calculate the temperature and solid fraction evolution during the solidification of an equi-
axed dendrite of an Fe-0.6%C alloy that has a volumetric grain density of 1 grain/mm3. 
Assume that the alloy is cooled at constant heat extraction rate of Q&  =3⋅108 J⋅m-3⋅s-1, and an 

initial temperature of 1520°C. 

: 
The governing heat transport ation is: equ dtdTcdtdfH∆Q Sfρ −=& . Rearranging and 

discretizing p

ρ
for time-step ing: 
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Note that this eq on is independent of volume. Assuming a spherical equia  dendrite, fS 
= (4/3  rS
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The solidification velocity is VS = µ⋅∆T2. The growth coefficient can be calculated with 
Eq. (8.22). Assuming a solutal dendrite, the discretized equation for the solidification veloc-
ity is: 
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D
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2 )1(2
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LCkm −Γπ

where 
LC  is the average liquid composition. 

To calculate the average liquid composition needed in this equation, a diffusion model 
must be used. We will compare the Scheil and equilibrium diffusion models. The time dis-
cretized equations for the two models are: 

Scheil: CL
new = Co (1 – fS

old)k-1     Equilibrium: 
old

S

o

k

C

1(1 −−
 (e) new

L
f

C
)

=

The evolution of the fraction solid is:    (f) 

Finally, the undercooling is calculated as: 

erage temperature in the volume element (the macro-temperature). Co is 

 new
S

old
S

new
S fff ∆+=

( ) bulkofbulkLoTc TCmTTTCCmTTT −+=−+−=∆+∆=∆ *  

where Tbulk is the av
the average liquid composition, 

LC . In discretized form this is: 

oldnew

Lf
new TCmTT −+=∆  (g) 

Table 8.5. Program implementation on the Excel spreadsheet. 

time
LC  ∆T VS rS ∆fS fS T 

Eq. (e) (g) (d) (c) (b) (f) (a) 

0    1.00E-07   1520 

0.01 0.600 00 0.0

0.59 0.6 0.394 2.62E-05 3.62E-07 4.31E-19 4.31E-19 1489.1 

17.6 1.79E-02 6.19E-01 8.62E

0E+00 1.00E-07 0.00E+00 0.00 1519.5 

1.47 0.602 44.7 3.35E-01 1.07E-01 4.82E-04 0.01 1444.8 
4.63 0.891 19.4 4.29E-02 4.90E-01 1.29E-03 0.50 1447.2 
9.17 1.746 -04 1.00 1380.5 

 
Since above the liquidus temperature there is no undercooling, an IF statement must be 
included which allows this 
are then implemented in the
case of equilibrium. An initial radius at time zero is assumed. The initial temperature is 

The calculated results are plotted in the Figure 8.26. It is seen that significant differences 
exist in both tempera
model. When the Scheil model is used, longer time is needed for completion of solidifica-
tion, 
rium

equation to become effective only at Tnew < TL. These equations 
 Excel spreadsheet, for example as shown in Table 8.5 fro the 

1520oC. 

ture and solid fraction evolution as a function of the chosen diffusion 

and a lower solidus temperature is reached (1187°C as compared to 1381°C for equilib-
). Dendritic solidification ends when the liquid composition becomes CL = CE = 4.26. 
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Figure 8.26. Evolution of 
temperature and solid fraction 

 

during the solidification of a 
condensed dendrite. 

Calculate the critical gradient for CET in the Al-5% Cu ingot pr ented in Figure 8.21 (N = 
5⋅106 m-3 and V = 3.5⋅10-4 m/s). Assume fS

coh = 0.3. The other data required for calculation 
 in App

Application 8.6 

es

are given endix B.  
 
Answer: 
Let us use the Hunt model first. From Eq. (8.46)) it is calculated that ∆Tc = 1.93K. Then, 
assuming that ∆TN << ∆Tc (wh
lated that the critical gradient

Hunt. This is within th . 
Let us now th coefficient 

for colum growth a  calc ted from q. (8.26)) as 

ich is not necessarily true), and using Eq. (8.45a) it is calcu-
 for CET is GT = 205K/m for the cr = 0.49 postulated but 

Sf

e range determined experimentally, which was 113 to 234 K/m
 use the model described by Eq. (8.49). The steady-state grow

nar  c n be ula  E ( ) 12 )1−(
−

Γ oc CkmDµ . We 

obtain µc = 7.64⋅  the same eq n, ass that nder
stitutional ndercool ∆T

L π
10-5. Then, from uatio uming  all u cooling is con-

, the u ing is  = µV  = 2.14 K. The growth ficient for the equi-

axed grains can lat 2 unde i ored we 
obtain µe = 5.35 e T = 123 
K/m, whic l 
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